33 research outputs found

    Probing The Electronic Structure Of Pure And Doped Cem In5 (m=co,rh,ir) Crystals With Nuclear Quadrupolar Resonance

    Get PDF
    We report calculations of the electric-field gradients (EFGs) in pure and doped CeM In5 (M=Co, Rh, and Ir) compounds and compare with experiment. The degree to which the Ce4f electron is localized is treated within various models: the local-density approximation, generalized gradient approximation (GGA), GGA+U, and 4f -core approaches. We find that there is a correlation between the observed EFG and whether the 4f electron participates in the band formation or not. We also find that the EFG evolves linearly with Sn doping in CeRhIn5, suggesting the electronic structure is modified by doping. In contrast, the observed EFG in CeCoIn5 doped with Cd changes little with doping. These results indicate that nuclear quadrupolar resonance is a sensitive probe of electronic structure. © 2008 The American Physical Society.7724Slichter, C.P., (1990) Principles of Magnetic Resonance, , 3rd ed. (Springer-Verlag, New YorkCurro, N.J., Caldwell, T., Bauer, E.D., Morales, L.A., Graf, M.J., Bang, Y., Balatsky, A.V., Sarrao, J.L., (2005) Nature (London), 434, p. 622. , NATUAS 0028-0836 10.1038/nature03428Farnan, I., Cho, H., Weber, W.J., (2007) Nature (London), 445, p. 190. , NATUAS 0028-0836 10.1038/nature05425Zheng, G.-Q., Tanabe, K., Mito, T., Kawasaki, S., Kitaoka, Y., Aoki, D., Haga, Y., Onuki, Y., (2001) Phys. Rev. Lett., 86, p. 4664. , PRLTAO 0031-9007 10.1103/PhysRevLett.86.4664Movshovich, R., Jaime, M., Thompson, J.D., Petrovic, C., Fisk, Z., Pagliuso, P.G., Sarrao, J.L., (2001) Phys. Rev. Lett., 86, p. 5152. , PRLTAO 0031-9007 10.1103/PhysRevLett.86.5152Pagliuso, P.G., Petrovic, C., Movshovich, R., Hall, D., Hundley, M.F., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2001) Phys. Rev. B, 64, p. 100503. , PRBMDO 0163-1829 10.1103/PhysRevB.64.100503Zapf, V.S., Freeman, E.J., Bauer, E.D., Petricka, J., Sirvent, C., Frederick, N.A., Dickey, R.P., Maple, M.B., (2001) Phys. Rev. B, 65, p. 014506. , PRBMDO 0163-1829 10.1103/PhysRevB.65.014506Ormeno, R.J., Sibley, A., Gough, C.E., Sebastian, S., Fisher, I.R., (2002) Phys. Rev. Lett., 88, p. 047005. , PRLTAO 0031-9007 10.1103/PhysRevLett.88.047005Park, T., Ronning, F., Yuan, H.Q., Salamon, M.B., Movshovich, R., Sarrao, J.L., Thompson, J.D., (2006) Nature (London), 440, p. 65. , NATUAS 0028-0836 10.1038/nature04571Petrovic, C., Movshovich, R., Jaime, M., Pagliuso, P.G., Hundley, M.F., Sarrao, J.L., Fisk, Z., Thompson, J.D., (2001) Europhys. Lett., 53, p. 354. , EULEEJ 0295-5075 10.1209/epl/i2001-00161-8Bao, W., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., Lynn, J.W., Erwin, R.W., (2000) Phys. Rev. B, 62, p. 14621. , PRBMDO 0163-1829 10.1103/PhysRevB.62.R14621Curro, N.J., Hammel, P.C., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2000) Phys. Rev. B, 62, p. 6100. , PRBMDO 0163-1829 10.1103/PhysRevB.62.R6100Hegger, H., Petrovic, C., Moshopoulou, E.G., Hundley, M.F., Sarrao, J.L., Fisk, Z., Thompson, J.D., (2000) Phys. Rev. Lett., 84, p. 4986. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.4986Shishido, H., Settai, R., Araki, S., Ueda, T., Inada, Y., Kobayashi, T.C., Muramatsu, T., Onuki, Y., (2002) Phys. Rev. B, 66, p. 214510. , PRBMDO 0163-1829 10.1103/PhysRevB.66.214510Shishido, H., Settai, R., Harima, H., Onuki, Y., (2005) J. Phys. Soc. Jpn., 74, p. 1103. , JUPSAU 0031-9015 10.1143/JPSJ.74.1103Pham, L.D., Park, T., Maquilon, S., Thompson, J.D., Fisk, Z., (2006) Phys. Rev. Lett., 97, p. 056404. , PRLTAO 0031-9007 10.1103/PhysRevLett.97.056404Daniel, M., Bauer, E.D., Han, S.-W., Booth, C.H., Cornelius, A.L., Pagliuso, P.G., Sarrao, J.L., (2005) Phys. Rev. Lett., 95, p. 016406. , PRLTAO 0031-9007 10.1103/PhysRevLett.95.016406Paglione, J., Sayles, T.A., Ho, P.-C., Jeffries, J.R., Maple, M.B., (2007) Nat. Phys., 3, p. 703. , ZZZZZZ 1745-2473Urbano, R.R., Young, B.-L., Curro, N.J., Thompson, J.D., Pham, L.D., Fisk, Z., (2007) Phys. Rev. Lett., 99, p. 146402. , PRLTAO 0031-9007 10.1103/PhysRevLett.99.146402Czyzyk, M.T., Sawatzky, G.A., (1994) Phys. Rev. B, 49, p. 14211. , PRBMDO 0163-1829 10.1103/PhysRevB.49.14211Anisimov, V.I., Solovyev, I.V., Korotin, M.A., Czyzyk, M.T., Sawatzky, G.A., (1993) Phys. Rev. B, 48, p. 16929. , PRBMDO 0163-1829 10.1103/PhysRevB.48.16929Bianchi, A., Movshovich, R., Vekhter, I., Pagliuso, P.G., Sarrao, J.L., (2003) Phys. Rev. Lett., 91, p. 257001. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.257001Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J., (2001) WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, , Karlheinz Schwarz, Techn. Universität Wien, AustriaKuneš, J., Novák, P., Divis, M., Oppeneer, P.M., (2001) Phys. Rev. B, 63, p. 205111. , PRBMDO 0163-1829 10.1103/PhysRevB.63.205111Blaha, P., Schwarz, K., Herzig, P., (1985) Phys. Rev. Lett., 54, p. 1192. , PRLTAO 0031-9007 10.1103/PhysRevLett.54.1192Herzig, P., (1985) Theor. Chim. Acta, 67, p. 323. , TCHAAM 0040-5744 10.1007/BF00529304Mohn, P., (2000) Hyperfine Interact., 128, p. 67. , HYINDN 0304-3843 10.1023/A:1012619212656Petrovic, C., Pagliuso, P.G., Hundley, M.F., Movshovich, R., Sarrao, J.L., Thompson, J.D., Fisk, Z., Monthoux, P., (2001) J. Phys.: Condens. Matter, 13, p. 337. , JCOMEL 0953-8984 10.1088/0953-8984/13/17/103Perdew, J.P., Wang, Y., (1992) Phys. Rev. B, 45, p. 13244. , PRBMDO 0163-1829 10.1103/PhysRevB.45.13244Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865. , PRLTAO 0031-9007 10.1103/PhysRevLett.77.3865Kohori, Y., Inoue, Y., Kohara, T., Tomka, G., Riedi, P.C., (1999) Physica B, 259-261, p. 103. , PHYBE3 0921-4526Rusz, J., Biasini, M., (2005) Phys. Rev. B, 71, p. 233103. , PRBMDO 0163-1829 10.1103/PhysRevB.71.233103Kohori, Y., Yamato, Y., Iwamoto, Y., Kohara, T., Bauer, E.D., Maple, M.B., Sarrao, J.L., (2001) Phys. Rev. B, 64, p. 134526. , PRBMDO 0163-1829 10.1103/PhysRevB.64.134526Curro, N.J., Simovic, B., Hammel, P.C., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Martins, G.B., (2001) Phys. Rev. B, 64, p. 180514. , PRBMDO 0163-1829 10.1103/PhysRevB.64.180514Lynch, D.W., Weaver, J.H., (1987) Handbook on the Physics and Chemistry of Rare Earths, 10, p. 231. , edited by K. A. Gschneidner, L. Eyring, and S. Hüfner (North-Holland, AmsterdamShishido, H., Settai, R., Aoki, D., Ikeda, S., Nakawaki, H., Nakamura, N., Iizuka, T., Onuki, Y., (2002) J. Phys. Soc. Jpn., 71, p. 162. , JUPSAU 0031-9015 10.1143/JPSJ.71.162Elgazzar, S., Opahle, I., Hayn, R., Oppeneer, P.M., (2004) Phys. Rev. B, 69, p. 214510. , PRBMDO 0163-1829 10.1103/PhysRevB.69.214510Oppeneer, P.M., Elgazzar, S., Shick, A.B., Opahle, I., Rusz, J., Hayn, R., (2007) J. Magn. Magn. Mater., 310, p. 1684. , JMMMDC 0304-8853 10.1016/j.jmmm.2006.10.763Bauer, E.D., Capan, C., Ronning, F., Movshovich, R., Thompson, J.D., Sarrao, J.L., (2005) Phys. Rev. Lett., 94, p. 047001. , PRLTAO 0031-9007 10.1103/PhysRevLett.94.047001Nakatsuji, S., Pines, D., Fisk, Z., (2004) Phys. Rev. Lett., 92, p. 016401. , PRLTAO 0031-9007 10.1103/PhysRevLett.92.016401Curro, N.J., Young, B.-L., Schmalian, J., Pines, D., (2004) Phys. Rev. B, 70, p. 235117. , PRBMDO 0163-1829 10.1103/PhysRevB.70.235117Yashima, M., Kawasaki, S., Kawasaki, Y., Zheng, G.-Q., Kitaoka, Y., Shishido, H., Settai, R., Onuki, Y., (2004) J. Phys. Soc. Jpn., 73, p. 2073. , JUPSAU 0031-9015 10.1143/JPSJ.73.2073Kawasaki, S., Zheng, G.-Q., Kan, H., Kitaoka, Y., Shishido, H., Onuki, Y., (2005) Phys. Rev. Lett., 94, p. 037007. , PRLTAO 0031-9007 10.1103/PhysRevLett.94.037007Haase, J., Sushkov, O.P., Horsch, P., Williams, G.V.M., (2004) Phys. Rev. B, 69, p. 094504. , PRBMDO 0163-1829 10.1103/PhysRevB.69.094504Curro, N.J., Nicklas, M., Stockert, O., Park, T., Habicht, K., Kiefer, K., Pham, L.D., Thompson, J.D., Steglich, F., (2007) Phys. Rev. B, 76, p. 052401. , PRBMDO 0163-1829 10.1103/PhysRevB.76.052401Settai, R., Shishido, H., Ikeda, S., Murakawa, Y., Nakashima, M., Aoki, D., Haga, Y., Onuki, Y., (2001) J. Phys.: Condens. Matter, 13, p. 627. , JCOMEL 0953-8984 10.1088/0953-8984/13/27/103Normile, P.S., Heathman, S., Idiri, M., Boulet, P., Rebizant, J., Wastin, F., Lander, G.H., Lindbaum, A., (2005) Phys. Rev. B, 72, p. 184508. , PRBMDO 0163-1829 10.1103/PhysRevB.72.184508Oppeneer, P.M., (2001) Handbook of Magnetic Materials, 13, pp. 229-422. , edited by K. H. J. Buschow (Elsevier, AmsterdamOppeneer, P.M., Antonov, V.N., Yaresko, A.N., Perlov, A.Y., Eschrig, H., (1997) Phys. Rev. Lett., 78, p. 4079. , PRLTAO 0031-9007 10.1103/PhysRevLett.78.4079Shim, J.H., Haule, K., Kotliar, G., (2007) Science, 318, p. 1615. , SCIEAS 0036-8075 10.1126/science.1149064Alver, U., Goodrich, R.G., Harrison, N., Hall, D.W., Palm, E.C., Murphy, T.P., Tozer, S.W., Fisk, Z., (2001) Phys. Rev. B, 64, p. 180402. , PRBMDO 0163-1829 10.1103/PhysRevB.64.180402Christianson, A.D., Lawrence, J.M., Pagliuso, P.G., Moreno, N.O., Sarrao, J.L., Thompson, J.D., Riseborough, P.S., Lacerda, A.H., (2002) Phys. Rev. B, 66, p. 193102. , PRBMDO 0163-1829 10.1103/PhysRevB.66.193102Haga, Y., Inada, Y., Harima, H., Oikawa, K., Murakawa, M., Nakawaki, H., Tokiwa, Y., Onuki, Y., (2001) Phys. Rev. B, 63, p. 060503. , PRBMDO 0163-1829 10.1103/PhysRevB.63.060503Fujimori, S.-I., Fujimori, A., Shimada, K., Narimura, T., Kobayashi, K., Namatame, H., Taniguchi, M., Opnuki, Y., (2006) Phys. Rev. B, 73, p. 224517. , PRBMDO 0163-1829 10.1103/PhysRevB.73.224517Paglione, J., Tanatar, M.A., Hawthorn, D.G., Ronning, F., Hill, R.W., Sutherland, M., Taillefer, L., Petrovic, C., (2006) Phys. Rev. Lett., 97, p. 106606. , PRLTAO 0031-9007 10.1103/PhysRevLett.97.10660

    Accurate evaluation of the interstitial KKR-Green function

    Full text link
    It is shown that the Brillouin zone integral for the interstitial KKR-Green function can be evaluated accurately by taking proper care of the free-electron singularities in the integrand. The proposed method combines two recently developed methods, a supermatrix method and a subtraction method. This combination appears to provide a major improvement compared with an earlier proposal based on the subtraction method only. By this the barrier preventing the study of important interstitial-like defects, such as an electromigrating atom halfway along its jump path, can be considered as being razed.Comment: 23 pages, RevTe

    Full Relativistic Electronic Structure and Fermi Surface Sheets of the First Honeycomb-Lattice Pnictide Superconductor SrPtAs

    Full text link
    We report full-potential density functional theory (DFT)-based {\it ab initio} band structure calculations to investigate electronic structure properties of the first pnictide superconductor with a honeycomb-lattice structure: SrPtAs. As a result, electronic bands, density of states, Fermi velocities and the topology of the Fermi surface for SrPtAs are obtained. These quantities are discussed in comparison to the first available experimental data. Predictions for future measurements are provided

    Ab-initio calculation of Kerr spectra for semi-infinite systems including multiple reflections and optical interferences

    Full text link
    Based on Luttinger's formulation the complex optical conductivity tensor is calculated within the framework of the spin-polarized relativistic screened Korringa-Kohn-Rostoker method for layered systems by means of a contour integration technique. For polar geometry and normal incidence ab-initio Kerr spectra of multilayer systems are then obtained by including via a 2x2 matrix technique all multiple reflections between layers and optical interferences in the layers. Applications to Co|Pt5 and Pt3|Co|Pt5 on the top of a semi-infinite fcc-Pt(111) bulk substrate show good qualitative agreement with the experimental spectra, but differ from those obtained by applying the commonly used two-media approach.Comment: 32 pages (LaTeX), 5 figures (Encapsulated PostScript), submitted to Phys. Rev.

    Direction‐sensitive magnetophotonic surface crystals

    Get PDF
    Nanometer-thin rare-earth–transition-metal (RE–TM) alloys with precisely controlled compositions and out-of-plane magnetic anisotropy are currently in the focus for ultrafast magnetophotonic applications. However, achieving lateral nanoscale dimensions, crucial for potential device downscaling, while maintaining designable optomagnetic functionality and out-of-plane magnetic anisotropy is extremely challenging. Herein, nanosized Tb18Co82 ferrimagnetic alloys, having strong out-of-plane magnetic anisotropy, within a gold plasmonic nanoantenna array to design a micrometer-scale magnetophotonic crystal that exhibits abrupt and narrow magneto-optical (MO) spectral features that are both magnetic field and light incidence direction controlled are integrated. The narrow Fano-type resonance arises through the interference of the individual nanoantenna's surface plasmons and a Rayleigh anomaly of the whole nanoantenna array, in both optical and MO spectra, which are demonstrated and explained using Maxwell theory simulations. This robust magnetophotonic crystal opens the way for conceptually new high-resolution light incidence direction sensors, as well as for building blocks for plasmon-assisted all-optical magnetization switching in ferrimagnetic RE–TM alloys

    On the path toward organic spintronics

    No full text
    Organic materials provide a unique platform for exploiting the spin of the electron—a field dubbed organic spintronics. Originally, this was mostly motivated by the notion that because of weak spin-orbit coupling, due to the small mass elements in organics and small hyperfine field coupling, organic matter typically displays a very long electron spin coherence time. More recently, however, it was found that organics provide a special class of spintronic materials for many other reasons—several of which are discussed throughout this issue. Over the past decade, there has been a growing interest in utilizing the molecular spin state as a quantum of information, aiming to develop multifunctional molecular spintronics for memory, sensing, and logic applications. The aim of this issue is to stimulate the interest of researchers by bringing to their attention the vast possibilities not only for unexpected science but also for the enormous potential for developing new functionalities and applications. The six articles in this issue deal with some of the breakthrough work that has been ongoing in this field in recent years

    Electronic Structure of Plutonium Monochalcogenides.

    No full text
    Abstract not availableJRC.E-Institute for Transuranium Elements (Karlsruhe

    Band-Theoretical Description of the Magneto-Optical Spectra of UAsSe

    No full text
    The magneto-optical Kerr spectra of the ternary uranium compounds UAsSe are investigated using first-principles energy-band thoery. Within a band-like description of the 5f electrons, good agreement with the measured optical spectra is obtained. UAsSe is therefore the first uranium compound where density-functional theory in the local-density approximation satisfactorily explains the magneto-optical Kerr spectra. This is further evidence for at least partially itinerant 5f electrons in UAsSe, in spite of it frequently being cgaracterized as a localized 5f ekectron system. It is suggested that the 5f electrons are delocalized in planes perpendicular to the c-axis and that the magneto-optical Kerr spectra are extremely anisotropic.JRC.E-Institute for Transuranium Elements (Karlsruhe

    Photoemission Study of the Electronic Structure of Am, AmN, AmSb, and Am2O3Films

    No full text
    Thin films of Am, AmN, AmSb, and Am2O3 have been prepared by sputter deposition. Their electronic structures have been studied by x-ray and ultraviolet photoelectron spectroscopy XPS and UPS, respectively. Care has been taken to achieve high-purity Am films. While the Am UPS spectrum reveals the presence of a conduction band, practically no such signature appears in the spectra of AmN, AmSb, and Am2O3, categorizing the later compounds as semiconductors or insulators. We present a consistent explanation of the peak structures in both the 5f valence-band and 4f core-level spectra in terms of final-state screening channels. In all four Am systems, we find the 5f electrons to be largely localized. The XPS core-level spectrum of Am metal indicates some residual 5f hybridization, which is substantially suppressed in AmN, AmSb, and Am2O3. We observe nearly no difference between the AmN and AmSb and Am2O3 spectra suggesting a similar 5f configuration, even though, in general, nitrides and antimonides are more covalent than oxides. The measured photoemission spectra are consistent with a 5f 6 ground-state configuration for all four systems.JRC.E.6-Actinides researc
    corecore